openstef.data_classes package¶
Submodules¶
openstef.data_classes.data_prep module¶
Specifies the split function dataclass.
- class openstef.data_classes.data_prep.DataPrepDataClass(**data)¶
Bases:
BaseModel
Class that allows to specify a custom class to prepare the data (feature engineering , etc …).
- arguments: str | dict[str, Any]¶
- klass: str | type[DataPrepClass]¶
- load(required_arguments=None)¶
Load the function and its arguments.
If the function and the arguments are given as strings in the instane attributes, load them as Python objects otherwise just return them from the instance attributes.
- Parameters:
required_arguments (list[str]) – list of arguments the loaded class must have
- Return type:
tuple
[type
[TypeVar
(DataPrepClass
)],dict
[str
,Any
]]- Returns:
class (type[AbstractDataPreparation])
arguments (dict[str, Any])
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
openstef.data_classes.model_specifications module¶
Specifies the dataclass for model specifications.
- class openstef.data_classes.model_specifications.ModelSpecificationDataClass(**data)¶
Bases:
BaseModel
Holds all information regarding the training procces of a specific model.
- feature_modules: list | None¶
- feature_names: list | None¶
- hyper_params: dict | None¶
- id: int | str¶
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
openstef.data_classes.prediction_job module¶
Specifies the prediction job dataclass.
- class openstef.data_classes.prediction_job.PredictionJobDataClass(**data)¶
Bases:
BaseModel
Holds all information about the specific forecast that has to be made.
- alternative_forecast_model_pid: int | str | None¶
- backtest_split_func: SplitFuncDataClass | None¶
- completeness_threshold: float¶
- data_balancing_ratio: float | None¶
- data_prep_class: DataPrepDataClass | None¶
- default_modelspecs: ModelSpecificationDataClass | None¶
- depends_on: list[int | str] | None¶
- description: str | None¶
- detect_non_zero_flatliner: bool¶
- electricity_bidding_zone: BiddingZone | None¶
- flatliner_threshold_minutes: int¶
- forecast_type: str¶
- get(key, default=None)¶
Allows to use the get functions similar to a python dict.
- Return type:
Any
- horizon_minutes: int | None¶
- hub_height: float | None¶
- id: int | str¶
- lat: float | None¶
- lon: float | None¶
- minimal_table_length: int¶
- model: str¶
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_kwargs: dict | None¶
- n_turbines: float | None¶
- name: str¶
- pipelines_to_run: list[PipelineType]¶
- quantiles: list[float] | None¶
- resolution_minutes: int¶
- rolling_aggregate_features: list[AggregateFunction] | None¶
- save_train_forecasts: bool¶
- sid: str | None¶
- train_components: bool | None¶
- train_horizons_minutes: list[int] | None¶
- train_split_func: SplitFuncDataClass | None¶
- turbine_type: str | None¶
openstef.data_classes.split_function module¶
Specifies the split function dataclass.
- class openstef.data_classes.split_function.SplitFuncDataClass(**data)¶
Bases:
BaseModel
Class that allows to specify a custom function to generate a train, test and validation set.
- arguments: str | dict[str, Any]¶
- function: str | Callable¶
- load(required_arguments=None)¶
Load the function and its arguments.
If the function and the arguments are given as strings in the instane attributes, load them as Python objects otherwise just return them from the instance attributes.
- Parameters:
required_arguments (list[str]) – list of arguments the loaded function must have
- Return type:
tuple
[Callable
,dict
[str
,Any
]]- Returns:
function (Callable)
arguments (dict[str, Any])
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].