openstef.data_classes package

Submodules

openstef.data_classes.data_prep module

Specifies the split function dataclass.

class openstef.data_classes.data_prep.DataPrepDataClass(**data)

Bases: BaseModel

Class that allows to specify a custom class to prepare the data (feature engineering , etc …).

arguments: str | dict[str, Any]
klass: str | type[DataPrepClass]
load(required_arguments=None)

Load the function and its arguments.

If the function and the arguments are given as strings in the instane attributes, load them as Python objects otherwise just return them from the instance attributes.

Parameters:

required_arguments (list[str]) – list of arguments the loaded class must have

Return type:

tuple[type[TypeVar(DataPrepClass)], dict[str, Any]]

Returns:

  • class (type[AbstractDataPreparation])

  • arguments (dict[str, Any])

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

openstef.data_classes.model_specifications module

Specifies the dataclass for model specifications.

class openstef.data_classes.model_specifications.ModelSpecificationDataClass(**data)

Bases: BaseModel

Holds all information regarding the training procces of a specific model.

feature_modules: list | None
feature_names: list | None
hyper_params: dict | None
id: int | str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

openstef.data_classes.prediction_job module

Specifies the prediction job dataclass.

class openstef.data_classes.prediction_job.PredictionJobDataClass(**data)

Bases: BaseModel

Holds all information about the specific forecast that has to be made.

alternative_forecast_model_pid: int | str | None
backtest_split_func: SplitFuncDataClass | None
completeness_threshold: float
data_balancing_ratio: float | None
data_prep_class: DataPrepDataClass | None
default_modelspecs: ModelSpecificationDataClass | None
depends_on: list[int | str] | None
description: str | None
detect_non_zero_flatliner: bool
electricity_bidding_zone: BiddingZone | None
flatliner_threshold_minutes: int
forecast_type: str
get(key, default=None)

Allows to use the get functions similar to a python dict.

Return type:

Any

horizon_minutes: int | None
hub_height: float | None
id: int | str
lat: float | None
lon: float | None
minimal_table_length: int
model: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_kwargs: dict | None
n_turbines: float | None
name: str
pipelines_to_run: list[PipelineType]
quantiles: list[float] | None
resolution_minutes: int
rolling_aggregate_features: list[AggregateFunction] | None
save_train_forecasts: bool
sid: str | None
train_components: bool | None
train_horizons_minutes: list[int] | None
train_split_func: SplitFuncDataClass | None
turbine_type: str | None

openstef.data_classes.split_function module

Specifies the split function dataclass.

class openstef.data_classes.split_function.SplitFuncDataClass(**data)

Bases: BaseModel

Class that allows to specify a custom function to generate a train, test and validation set.

arguments: str | dict[str, Any]
function: str | Callable
load(required_arguments=None)

Load the function and its arguments.

If the function and the arguments are given as strings in the instane attributes, load them as Python objects otherwise just return them from the instance attributes.

Parameters:

required_arguments (list[str]) – list of arguments the loaded function must have

Return type:

tuple[Callable, dict[str, Any]]

Returns:

  • function (Callable)

  • arguments (dict[str, Any])

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

Module contents