FeatureImportancePlotter#
- class openstef_models.explainability.FeatureImportancePlotter(**data: Any) None[source]#
Bases:
BaseConfigCreates treemap visualizations of feature importance scores.
- Parameters:
data (
Any)
- static plot(scores: DataFrame, quantile: Quantile = Q(0.5)) Figure[source]#
Generate interactive treemap showing feature importance.
Creates a color-coded treemap where each box size and color intensity represents the relative importance of a feature. Useful for quickly identifying which features contribute most to model predictions.
- Parameters:
scores (
DataFrame) – Feature importance scores with feature names as index and quantiles as columns (e.g., ‘q0.5’, ‘q0.95’). Values should be normalized to sum to 1.0.quantile (
Quantile) – Which quantile column to visualize. Defaults to median (0.5).scores
quantile
- Returns:
Plotly Figure containing interactive treemap with hover information. Larger boxes and darker green colors indicate higher importance.
- Return type:
Figure
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': False, 'extra': 'ignore', 'protected_namespaces': ()}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].