EvaluationSubsetReport#

class openstef_beam.evaluation.EvaluationSubsetReport(**data: Any) None[source]#

Bases: BaseModel

Container for evaluation results on a specific data subset.

Bundles filtering criteria, evaluation subset data, and computed metrics for a particular slice of the evaluation dataset. Enables persistence and retrieval of evaluation results for analysis.

Parameters:

data (Any)

filtering: TypeAliasType#
subset: ForecastDataset#
metrics: list[SubsetMetric]#
to_parquet(path: Path)[source]#

Save the subset report to parquet files in the specified directory.

Parameters:
  • path (Path) – Directory where to save the report data.

  • path

classmethod read_parquet(path: Path) Self[source]#

Load a subset report from parquet files in the specified directory.

Parameters:
  • path (Path) – Directory containing the saved report data.

  • path

Returns:

Loaded EvaluationSubsetReport instance.

Return type:

Self

get_global_metric() SubsetMetric | None[source]#

Returns the SubsetMetric with window=’global’, or None if not found.

Return type:

SubsetMetric | None

get_windowed_metrics() list[SubsetMetric][source]#

Returns all SubsetMetrics with window != ‘global’.

Return type:

list[SubsetMetric]

get_measurements() Series[source]#

Extract measurements Series from the report for the given target.

Return type:

Series

Returns:

Ground truth measurements as a pandas Series.

get_quantile_predictions() DataFrame[source]#

Extract forecasted quantiles from the report.

Return type:

DataFrame

Returns:

Dataset containing forecasted quantile predictions.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'protected_namespaces': (), 'ser_json_inf_nan': 'null'}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].